Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 127
Filter
1.
Aging Cell ; : e14113, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38708778

ABSTRACT

Chronic conditions associated with aging have proven difficult to prevent or treat. Senescence is a cell fate defined by loss of proliferative capacity and the development of a pro-inflammatory senescence-associated secretory phenotype comprised of cytokines/chemokines, proteases, and other factors that promotes age-related diseases. Specifically, an increase in senescent peripheral blood mononuclear cells (PBMCs), including T cells, is associated with conditions like frailty, rheumatoid arthritis, and bone loss. However, it is unknown if the percentage of senescent PBMCs associated with age-associated orthopedic decline could be used for potential diagnostic or prognostic use in orthopedics. Here, we report senescent cell detection using the fluorescent compound C12FDG to quantify PBMCs senescence across a large cohort of healthy and osteoarthritic patients. There is an increase in the percent of circulating C12FDG+ PBMCs that is commensurate with increases in age and senescence-related serum biomarkers. Interestingly, C12FDG+ PBMCs and T cells also were found to be elevated in patients with mild to moderate osteoarthritis, a progressive joint disease that is strongly associated with inflammation. The percent of C12FDG+ PBMCs and age-related serum biomarkers were decreased in a small subgroup of study participants taking the senolytic drug fisetin. These results demonstrate quantifiable measurements in a large group of participants that could create a composite score of healthy aging sensitive enough to detect changes following senolytic therapy and may predict age-related orthopedic decline. Detection of peripheral senescence in PBMCs and subsets using C12FDG may be clinically useful for quantifying cellular senescence and determining how and if it plays a pathological role in osteoarthritic progression.

2.
Int J Biol Macromol ; 268(Pt 1): 131614, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38631567

ABSTRACT

The global consumption of meat products is on the rise, leading to concerns about sustainability, fat content, and shelf life. Synthetic additives and preservatives used to extend the shelf life of meat often have negative health and environmental implications. Natural polysaccharides such as seed gums possess unique techno-functional properties, including water holding capacity, emulsifying, and film forming, offering potential alternatives in meat processing and preservation. This study explores the use of gums in meat and meat product processing and preservation. The water holding and emulsifying properties of gums can potentially bind fat and reduce overall lipid content, while their antimicrobial and film-forming properties can inhibit the microbial growth and reduce oxidation, thereby extending the shelf life. Incorporating gums as a fat replacer and edible coating shows promise for reducing fat content and extending the shelf life of meat and meat products.

3.
BMC Genomics ; 25(1): 382, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38637768

ABSTRACT

BACKGROUND: Auxin/induced-3-acetic acid (Aux/IAA) is an important plant hormone that affects plant growth and resistance to abiotic stresses. Drought stress is a vital factor in reducing plant biomass yield and production quality. Alfalfa (Medicago sativa L.) is the most widely planted leguminous forage and one of the most economically valuable crops in the world. Aux/IAA is one of the early responsive gene families of auxin, playing a crucial role in response to drought stress. However, the characteristics of the Aux/IAA gene family in alfalfa and its potential function in response to drought stress are still unknown. RESULT: A total of 41 Aux/IAA gene members were identified in alfalfa genome. The physicochemical, peptide structure, secondary and tertiary structure analysis of proteins encoded by these genes revealed functional diversity of the MsIAA gene. A phylogenetic analysis classified the MsIAA genes into I-X classes in two subgroups. And according to the gene domain structure, these genes were classified into typical MsIAA and atypical MsIAA. Gene structure analysis showed that the MsIAA genes contained 1-4 related motifs, and except for the third chromosome without MsIAAs, they were all located on 7 chromosomes. The gene duplication analysis revealed that segmental duplication and tandem duplication greatly affected the amplification of the MsIAA genes. Analysis of the Ka/Ks ratio of duplicated MsAux/IAA genes suggested purification selection pressure was high and functional differences were limited. In addition, identification and classification of promoter cis-elements elucidated that MsIAA genes contained numerous elements associated to phytohormone response and abiotic stress response. The prediction protein-protein interaction network showed that there was a complex interaction between the MsAux/IAA genes. Gene expression profiles were tissue-specific, and MsAux/IAA had a broad response to both common abiotic stress (ABA, salt, drought and cold) and heavy metal stress (Al and Pb). Furthermore, the expression patterns analysis of 41 Aux/IAA genes by the quantitative reverse transcription polymerase chain reaction (qRT-PCR) showed that Aux/IAA genes can act as positive or negative factors to regulate the drought resistance in alfalfa. CONCLUSION: This study provides useful information for the alfalfa auxin signaling gene families and candidate evidence for further investigation on the role of Aux/IAA under drought stress. Future studies could further elucidate the functional mechanism of the MsIAA genes response to drought stress.


Subject(s)
Droughts , Medicago sativa , Medicago sativa/genetics , Phylogeny , Plant Proteins/metabolism , Indoleacetic Acids/metabolism , Plant Growth Regulators , Stress, Physiological/genetics , Gene Expression Regulation, Plant
4.
Life (Basel) ; 14(3)2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38541613

ABSTRACT

Segmental bone defects that are caused by trauma, infection, tumor resection, or osteoporotic fractures present significant surgical treatment challenges. Host bone autograft is considered the gold standard for restoring function but comes with the cost of harvest site comorbidity. Allograft bone is a secondary option but has its own limitations in the incorporation with the host bone as well as its cost. Therefore, developing new bone tissue engineering strategies to treat bone defects is critically needed. In the past three decades, the use of stem cells that are delivered with different scaffolds or growth factors for bone tissue engineering has made tremendous progress. Many varieties of stem cells have been isolated from different tissues for use in bone tissue engineering. This review summarizes the progress in using different postnatal stem cells, including bone marrow mesenchymal stem cells, muscle-derived stem cells, adipose-derived stem cells, dental pulp stem cells/periodontal ligament stem cells, periosteum stem cells, umbilical cord-derived stem cells, peripheral blood stem cells, urine-derived stem cells, stem cells from apical papilla, and induced pluripotent stem cells, for bone tissue engineering and repair. This review also summarizes the progress using exosomes or extracellular vesicles that are delivered with various scaffolds for bone repair. The advantages and disadvantages of each type of stem cell are also discussed and explained in detail. It is hoped that in the future, these preclinical results will translate into new regenerative therapies for bone defect repair.

5.
Pharmaceutics ; 16(2)2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38399267

ABSTRACT

Poly (ß-amino ester) (PBAE) is an exceptional non-viral vector that is widely used in gene delivery, owing to its exceptional biocompatibility, easy synthesis, and cost-effectiveness. However, it carries a high surface positive charge that may cause cytotoxicity. Therefore, hydrophilic d-α-tocopherol polyethylene glycol succinate (TPGS) was copolymerised with PBAE to increase the biocompatibility and to decrease the potential cytotoxicity of the cationic polymer-DNA plasmid polyplex nanoparticles (NPs) formed through electrostatic forces between the polymer and DNA. TPGS-b-PBAE (TBP) copolymers with varying feeding molar ratios were synthesised to obtain products of different molecular weights. Their gene transfection efficiency was subsequently evaluated in HEK 293T cells using green fluorescent protein plasmid (GFP) as the model because free GFP is unable to easily pass through the cell membrane and then express as a protein. The particle size, ζ-potential, and morphology of the TBP2-GFP polyplex NPs were characterised, and plasmid incorporation was confirmed through gel retardation assays. The TBP2-GFP polyplex NPs effectively transfected multiple cells with low cytotoxicity, including HEK 293T, HeLa, Me180, SiHa, SCC-7 and C666-1 cells. We constructed a MUC2 (Mucin2)-targeting CRISPR/cas9 gene editing system in HEK 293T cells, with gene disruption supported by oligodeoxynucleotide (ODN) insertion in vitro. Additionally, we developed an LMP1 (latent membrane protein 1)-targeting CRISPR/cas9 gene editing system in LMP1-overexpressing SCC7 cells, which was designed to cleave fragments expressing the LMP1 protein (related to Epstein-Barr virus infection) and thus to inhibit the growth of the cells in vivo. As evidenced by in vitro and in vivo experiments, this system has great potential for gene therapy applications.

6.
Mar Pollut Bull ; 201: 116183, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38412799

ABSTRACT

Sesarmid crabs modulate nutrient dynamics of tropical mangroves through their leaf-eating habit. How N enrichment may alter this regulatory role, and the implications for mangrove nutrient dynamics, remain unclear. Using a mesocosm experiment, we tested how N enrichment could change the microphytobenthos (MPB) communities, thus modifying the crabs' diet and their role in nutrient dynamics. The factorial experiment combined with field investigation revealed a significant increase in the relative abundance of cyanobacteria. Stable isotope analysis suggested that the main carbon source of crabs shifted from leaf litter to cyanobacteria in mesocosms under both high (20×) and low (2×) N enrichment treatments. The significantly lower total cellulase activity of crabs in the mesocosms might explain the decreased carbon assimilation from leaf litter. The changes in the MPB and the microbiome with N enrichment in the presence of crabs may drive significantly higher carbon processing rate in tropical mangroves.


Subject(s)
Brachyura , Ecosystem , Animals , Nitrogen , Carbon , Diet
7.
Clin Nutr ; 43(2): 453-467, 2024 02.
Article in English | MEDLINE | ID: mdl-38181523

ABSTRACT

BACKGROUND & AIMS: Short-term intensive fasting (STIF), known as beego in Chinese phonetic articulation, has been practiced for more than two thousand years. However, the potential risk of STIF and the body's response to the risk have not been adequately evaluated. This study aims to address this issue, focusing on the STIF-triggered metabolic response of the liver and kidney. METHODS: The STIF procedure in the clinical trial includes a 7-day water-only intensive fasting phase and a 7-day gradual refeeding phase followed by a regular diet. The intensive fasting in humans was assisted with psychological induction. To gain insights not available in the clinical trial, we designed a STIF program for mice that resulted in similar phenotypes seen in humans. Plasma metabolic profiling and examination of gene expression as well as liver and kidney function were performed by omics, molecular, biochemical and flow cytometric analyses. A human cell line model was also used for mechanistic study. RESULTS: Clinically significant metabolites of fat and protein were found to accumulate during the fasting phase, but they were relieved after gradual refeeding. Metabolomics profiling revealed a universal pattern in the consumption of metabolic intermediates, in which pyruvate and succinate are the two key metabolites during STIF. In the STIF mouse model, the accumulation of metabolites was mostly counteracted by the upregulation of catabolic enzymes in the liver, which was validated in a human cell model. Kidney filtration function was partially affected by STIF but could be recovered by refeeding. STIF also reduced oxidative and inflammatory levels in the liver and kidney. Moreover, STIF improved lipid metabolism in mice with fatty liver without causing accumulation of metabolites after STIF. CONCLUSIONS: The accumulation of metabolites induced by STIF can be relieved by spontaneous upregulation of catabolic enzymes, suggesting an adaptive and protective metabolic response to STIF stress in the mammalian body.


Subject(s)
Diet , Fasting , Mice , Humans , Animals , Liver/metabolism , Lipid Metabolism , Mammals
8.
BMC Genomics ; 25(1): 110, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38267840

ABSTRACT

BACKGROUND: B-box (BBX) family is a class of zinc finger transcription factors (TFs) that play essential roles in regulating plant growth, development, as well as abiotic stress. However, no systematic analysis of BBX genes has yet been conducted in alfalfa (Medica go sativa L.), and their functions have not been elucidated up to now. RESULTS: In this study, 28 MsBBX genes were identified from the alfalfa genome, which were clustered into 4 subfamilies according to an evolutionary tree of BBX proteins. Exon-intron structure and conserved motif analysis reflected the evolutionary conservation of MsBBXs in alfalfa. Collinearity analysis showed that segmental duplication promoted the expansion of the MsBBX family. Analysis of cis-regulatory elements suggested that the MsBBX genes possessed many growth/development-, light-, phytohormone-, and abiotic stress-related elements. MsBBX genes were differentially expressed in leaves, flowers, pre-elongated stems, elongated stems, roots and nodules, and most MsBBXs were remarkably induced by drought, salt and various plant growth regulators (ABA, JA, and SA). Further functional verification demonstrated that overexpressing of the MsBBX11 gene clearly promoted salt tolerance in transgenic Arabidopsis by regulating growth and physiological processes of seedlings. CONCLUSIONS: This research provides insights into further functional research and regulatory mechanisms of MsBBX family genes under abiotic stress of alfalfa.


Subject(s)
Arabidopsis , Medicago sativa , Medicago sativa/genetics , Biological Evolution , Droughts , Plant Growth Regulators , Stress, Physiological/genetics
9.
Pharmaceutics ; 16(1)2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38276521

ABSTRACT

Gene therapy displays great promise in the treatment of cervical cancer. The occurrence of cervical cancer is highly related to persistent human papilloma virus (HPV) infection. The HPV oncogene can be cleaved via gene editing technology to eliminate carcinogenic elements. However, the successful application of the gene therapy method depends on effective gene delivery into the vagina. To improve mucosal penetration and adhesion ability, quaternized chitosan was introduced into the poly(ß-amino ester) (PBAE) gene-delivery system in the form of quaternized chitosan-g-PBAE (QCP). At a mass ratio of PBAE:QCP of 2:1, the polymers exhibited the highest green fluorescent protein (GFP) transfection efficiency in HEK293T and ME180 cells, which was 1.1 and 5.4 times higher than that of PEI 25 kD. At this mass ratio, PBAE-QCP effectively compressed the GFP into spherical polyplex nanoparticles (PQ-GFP NPs) with a diameter of 255.5 nm. In vivo results indicated that owing to the mucopenetration and adhesion capability of quaternized CS, the GFP transfection efficiency of the PBAE-QCP hybrid system was considerably higher than those of PBAE and PEI 25 kD in the vaginal epithelial cells of Sprague-Dawley rats. Furthermore, the new system demonstrated low toxicity and good safety, laying an effective foundation for its further application in gene therapy.

10.
Nutr Res ; 119: 56-64, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37748429

ABSTRACT

Coronary plaque stability is a key pathological mechanism of coronary heart disease (CHD). Inflammation is recognized as a key factor of coronary plaque stability. The dietary inflammatory index (DII) is calculated from 21 dietary nutrients to predict the inflammation potential of an individual's diet. We hypothesized that high DII may be associated with decreased coronary plaque stability in CHD patients; therefore, this study aimed to evaluate the association between DII and plaque stability in patients with CHD. This cross-sectional study included 314 patients with CHD. DII was calculated based on food frequency questionnaires. Plaque stability was measured with optical coherence tomography. The DII ranged from -1.41 to 3.04. After adjusting for confounding factors, higher DII scores were associated with unstable plaque characteristics including thin-capped fibroatheroma (odds ratio [OR], 3.60; 95% confidence interval [CI], 1.78-7.29), macrophage infiltration (OR, 2.16; 95% CI, 1.01-4.61), and plaque rupture (OR, 3.55; 95% CI, 1.73-7.29). Mediation analyses revealed that DII was important mediator of the relationship between plaque stability and food intake including soybeans and nuts, fish and shrimp, eggs (P < .05). The present study confirmed that higher DII is significantly associated with decreased plaque stability in CHD patients, suggesting an important protective role of anti-inflammatory diets in the pathogenesis of CHD.


Subject(s)
Coronary Disease , Plaque, Atherosclerotic , Humans , Risk Factors , Cross-Sectional Studies , Diet , Inflammation/complications , Coronary Disease/complications
11.
Antioxidants (Basel) ; 12(8)2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37627641

ABSTRACT

Fisetin has been shown to be beneficial for brain injury and age-related brain disease via different mechanisms. The purpose of this study was to determine the presence of senescent cells and the effects of fisetin on cellular senescence in the brain and other vital organs in old sheep, a more translational model. Female sheep 6-7 years old (N = 6) were treated with 100 mg/kg fisetin or vehicle alone on two consecutive days a week for 8 weeks. All vital organs were harvested at the time of sacrifice. Histology, immunofluorescence staining, and RT-Q-PCR were performed on different regions of brain tissues and other organs. Our results indicated that fisetin treatment at the current regimen did not affect the general morphology of the brain. The presence of senescent cells in both the cerebral brain cortex and cerebellum and non-Cornu Ammonis (CA) area of the hippocampus was detected by senescent-associated ß-galactosidase (SA-ß-Gal) staining and GL13 (lipofuscin) staining. The senescent cells detected were mainly neurons in both gray and white matter of either the cerebral brain cortex, cerebellum, or non-CA area of the hippocampus. Very few senescent cells were detected in the neurons of the CA1-4 area of the hippocampus, as revealed by GL13 staining and GLB1 colocalization with NEUN. Fisetin treatment significantly decreased the number of SA-ß-Gal+ cells in brain cortex white matter and GL13+ cells in the non-CA area of the hippocampus, and showed a decreasing trend of SA-ß-Gal+ cells in the gray matter of both the cerebral brain cortex and cerebellum. Furthermore, fisetin treatment significantly decreased P16+ and GLB1+ cells in neuronal nuclear protein (NEUN)+ neurons, glial fibrillary acidic protein (GFAP)+ astrocytes, and ionized calcium binding adaptor molecule 1 (IBA1)+ microglia cells in both gray and white matter of cerebral brain cortex. Fisetin treatment significantly decreased GLB1+ cells in microglia cells, astrocytes, and NEUN+ neurons in the non-CA area of the hippocampus. Fisetin treatment significantly decreased plasma S100B. At the mRNA level, fisetin significantly downregulated GLB1 in the liver, showed a decreasing trend in GLB1 in the lung, heart, and spleen tissues, and significantly decreased P21 expression in the liver and lung. Fisetin treatment significantly decreased TREM2 in the lung tissues and showed a trend of downregulation in the liver, spleen, and heart. A significant decrease in NRLP3 in the liver was observed after fisetin treatment. Finally, fisetin treatment significantly downregulated SOD1 in the liver and spleen while upregulating CAT in the spleen. In conclusion, we found that senescent cells were widely present in the cerebral brain cortex and cerebellum and non-CA area of the hippocampus of old sheep. Fisetin treatment significantly decreased senescent neurons, astrocytes, and microglia in both gray and white matter of the cerebral brain cortex and non-CA area of the hippocampus. In addition, fisetin treatment decreased senescent gene expressions and inflammasomes in other organs, such as the lung and the liver. Fisetin treatment represents a promising therapeutic strategy for age-related diseases.

12.
Immun Ageing ; 20(1): 44, 2023 Aug 30.
Article in English | MEDLINE | ID: mdl-37649035

ABSTRACT

BACKGROUND: Fasting is known to influence the immune functions of leukocytes primarily by regulating their mobilization and redistribution between the bone marrow and the peripheral tissues or circulation, in particular via relocalization of leukocytes back in the bone marrow. However, how the immune system responds to the increased risk of invasion by infectious pathogens with fewer leukocytes in the peripheral blood during fasting intervention remains an open question. RESULTS: We used proteomic, biochemical and flow cytometric tools to evaluate the impact of short-term intensive fasting (STIF), known as beego, on red blood cells by profiling the cells from the STIF subjects before and after 6 days of fasting and 6 days of gradual refeeding. We found that STIF, by triggering the activation of the complement system via the complement receptor on the membrane of red blood cells, boosts fairly sustainable function of red blood cells in immune responses in close relation to various pathogens, including viruses, bacteria and parasites, particularly with the pronounced capacity to defend against SARS-CoV-2, without compromising their oxygen delivery capacity and viability. CONCLUSION: STIF fosters the immune function of red blood cells and therefore, it may be considered as a nonmedical intervention option for the stronger capacity of red blood cells to combat infectious diseases.

13.
Arthroscopy ; 39(12): 2408-2419, 2023 12.
Article in English | MEDLINE | ID: mdl-37270113

ABSTRACT

PURPOSE: To investigate the effects of combining bone marrow stimulation (BMS) with oral losartan to block transforming growth factor ß1 (TGF-ß1) on biomechanical repair strength in a rabbit chronic injury model. METHODS: Forty rabbits were randomly allocated into 4 groups (10 in each group). The supraspinatus tendon was detached and left alone for 6 weeks to establish a rabbit chronic injury model and was then repaired in a surgical procedure using a transosseous, linked, crossing repair construct. The animals were divided into the following groups: control group (group C), surgical repair only; BMS group (group B), surgical repair with BMS of the tuberosity; losartan group (group L), surgical repair plus oral losartan (TGF-ß1 blocker) for 8 weeks; and BMS-plus-losartan group (group BL), surgical repair plus BMS plus oral losartan for 8 weeks. At 8 weeks after repair, biomechanical and histologic evaluations were performed. RESULTS: The biomechanical testing results showed significantly higher ultimate load to failure in group BL than in group B (P = .029) but not compared with group C or group L. A 2 × 2 analysis-of-variance model found that the effect of losartan on ultimate load significantly depended on whether BMS was performed (interaction term F1,28 = 5.78, P = .018). No difference was found between the other groups. No difference in stiffness was found between any groups. On histologic assessment, groups B, L, and BL showed improved tendon morphology and an organized type I collagen matrix with less type III collagen compared with group C. Group BL showed the most highly organized tendon matrix with more type I collagen and less type III collagen, which indicates less fibrosis. Similar results were found at the bone-tendon interface. CONCLUSIONS: Rotator cuff repair combined with oral losartan and BMS of the greater tuberosity showed improved pullout strength and a highly organized tendon matrix in this rabbit chronic injury model. CLINICAL RELEVANCE: Tendon healing or scarring is accompanied by the formation of fibrosis, which has been shown to result in compromised biomechanical properties, and is therefore a potential limiting factor in healing after rotator cuff repair. TGF-ß1 expression has been shown to play an important role in the formation of fibrosis. Recent studies focusing on muscle healing and cartilage repair have found that the downregulation of TGF-ß1 by losartan intake can reduce fibrosis and improve tissue regeneration in animal models.


Subject(s)
Bone Marrow , Losartan , Animals , Rabbits , Losartan/pharmacology , Losartan/therapeutic use , Transforming Growth Factor beta1 , Collagen Type I , Collagen Type III , Tendons/surgery , Fibrosis
14.
Article in English | MEDLINE | ID: mdl-37145890

ABSTRACT

Stem cell therapy represents one of the most promising approaches for tissue repair and regeneration. However, the full potential of stem cell therapy remains to be realized. One major challenge is the insufficient homing and retention of stem cells at the desired sites after in vivo delivery. Here, we provide a proof-of-principle demonstration of magnetic targeting and retention of human muscle-derived stem cells (hMDSCs) in vitro through magnetic force-mediated internalization of magnetic iron oxide nanoparticles (MIONs) and the use of a micropatterned magnet. We found that the magnetic force-mediated cellular uptake of MIONs occurs through an endocytic pathway, and the MIONs were exclusively localized in the lysosomes. The intracellular MIONs had no detrimental effect on the proliferation of hMDSCs or their multilineage differentiation, and no MIONs were translocated to other cells in a coculture system. Using hMDSCs and three other cell types including human umbilical vein endothelial cells (HUVECs), human dermal fibroblasts (HDFs), and HeLa cells, we further discovered that the magnetic force-mediated MION uptake increased with MION size and decreased with cell membrane tension. We found that the cellular uptake rate was initially increased with MION concentration in solution and approached saturation. These findings provide important insight and guidance for magnetic targeting of stem cells in therapeutic applications.

15.
Int J Rheum Dis ; 26(11): 2297-2300, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37218670

ABSTRACT

Systemic lupus erythematosus (SLE) is an autoimmune disorder that affects multiple organs and systems, including joints, the cardiovascular system, lungs, skin, kidneys, the nervous system, and blood. The clinical presentations of SLE are diverse and vary widely. In this report, we present a case of a patient whose SLE was complicated by hemochromatosis to enhance clinicians' comprehension of this infrequent or rare complication of SLE. We aim to provide insights into the diagnosis and treatment processes of this condition.


Subject(s)
Autoimmune Diseases , Hemochromatosis , Lupus Erythematosus, Systemic , Humans , Hemochromatosis/complications , Hemochromatosis/diagnosis , Hemochromatosis/therapy , Lupus Erythematosus, Systemic/complications , Lupus Erythematosus, Systemic/diagnosis , Lupus Erythematosus, Systemic/drug therapy , Autoimmune Diseases/complications , Skin
16.
Aging Cell ; 22(8): e13889, 2023 08.
Article in English | MEDLINE | ID: mdl-37226323

ABSTRACT

The bone marrow niche maintains hematopoietic stem cell (HSC) homeostasis and declines in function in the physiologically aging population and in patients with hematological malignancies. A fundamental question is now whether and how HSCs are able to renew or repair their niche. Here, we show that disabling HSCs based on disrupting autophagy accelerated niche aging in mice, whereas transplantation of young, but not aged or impaired, donor HSCs normalized niche cell populations and restored niche factors in host mice carrying an artificially harassed niche and in physiologically aged host mice, as well as in leukemia patients. Mechanistically, HSCs, identified using a donor lineage fluorescence-tracing system, transdifferentiate in an autophagy-dependent manner into functional niche cells in the host that include mesenchymal stromal cells and endothelial cells, previously regarded as "nonhematopoietic" sources. Our findings thus identify young donor HSCs as a primary parental source of the niche, thereby suggesting a clinical solution to revitalizing aged or damaged bone marrow hematopoietic niche.


Subject(s)
Bone Marrow , Mesenchymal Stem Cells , Mice , Animals , Endothelial Cells , Stem Cell Niche/physiology , Hematopoietic Stem Cells , Bone Marrow Cells , Hematopoiesis/physiology
17.
Int J Mol Sci ; 24(8)2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37108434

ABSTRACT

Low-light intensity affects plant growth and development and, finally, causes a decrease in yield and quality. There is a need for improved cropping strategies to solve the problem. We previously demonstrated that moderate ammonium:nitrate ratio (NH4+:NO3-) mitigated the adverse effect caused by low-light stress, although the mechanism behind this alleviation is unclear. The hypothesis that the synthesis of nitric oxide (NO) induced by moderate NH4+:NO3- (10:90) involved in regulating photosynthesis and root architecture of Brassica pekinesis subjected to low-light intensity was proposed. To prove the hypothesis, a number of hydroponic experiments were conducted. The results showed that in plants exposed to low-light intensity, the exogenous donors NO (SNP) and NH4+:NO3- (N, 10:90) treatments significantly increased leaf area, growth range, and root fresh weight compared with nitrate treatment. However, the application of hemoglobin (Hb, NO scavenger), N-nitro-l-arginine methyl ester (L-NAME, NOS inhibitor), and sodium azide (NaN3, NR inhibitor) in N solution remarkably decreased the leaf area, canopy spread, the biomass of shoot and root, the surface area, and volume and tips of the root. The application of N solution and exogenous SNP significantly enhanced Pn (Net photosynthetic rate) and rETR (relative electron transport rates) compared with solo nitrate. While all these effects of N and SNP on photosynthesis, such as Pn, Fv/Fm (maximum quantum yield of PSII), Y(II) (actual photosynthetic efficiency), qP (photochemical quenching), and rETR were reversed when the application of Hb, L-NAME, and NaN3 in N solution. The results also showed that the N and SNP treatments were more conducive to maintaining cell morphology, chloroplast structure, and a higher degree of grana stacking of low-light treated plants. Moreover, the application of N significantly increased the NOS and NR activities, and the NO levels in the leaves and roots of mini Chinese cabbage seedlings treated with N were significantly higher than those in nitrate-treated plants. In conclusion, the results of this study showed that NO synthesis induced by the appropriate ammonia-nitrate ratio (NH4+:NO3- = 10:90) was involved in the regulation of photosynthesis and root structure of Brassica pekinesis under low-light stress, effectively alleviating low-light stress and contributing to the growth of mini Chinese cabbage under low-light stress.


Subject(s)
Ammonium Compounds , Brassica , Nitrates/pharmacology , Nitric Oxide/pharmacology , NG-Nitroarginine Methyl Ester/pharmacology , Photosynthesis , Seedlings , Ammonium Compounds/pharmacology , Plant Leaves , Plant Roots , Nitrogen/pharmacology
18.
Microorganisms ; 11(4)2023 Apr 14.
Article in English | MEDLINE | ID: mdl-37110447

ABSTRACT

Composting, planting, and breeding waste for return to the field is the most crucial soil improvement method under the resource utilization of agricultural waste. However, how the vegetable yield and rhizosphere soil environment respond to different composts is still unknown. Therefore, eight formulations were designed for compost fermentation using agricultural waste [sheep manure (SM), tail vegetable (TV), cow manure (CM), mushroom residue (MR), and corn straw (CS)] without fertilizer (CK1) and local commercial organic fertilizer (CK2) as controls to study the yield and rhizosphere soil environment of greenhouse zucchini in response to different planting and breeding waste compost. Applying planting and breeding waste compost significantly increased the soil's organic matter and nutrient content. It inhibited soil acidification, which T4 (SM:TV:CS = 6:3:1) and T7 (SM:TV:MR:CS = 6:2:1:1) treatments affected significantly. Compared to CK2 treatment, T4 and T7 treatments showed a greater increase, with a significant increase of 14.69% and 11.01%, respectively. Therefore, T4, T7, and two control treatments were selected for high-throughput sequencing based on yield performance. Compared with the CK1 treatment, although multiple applications of chemical fertilizers led to a decrease in bacterial and fungal richness, planting and breeding waste compost maintained bacterial diversity and enhanced fungal diversity. Compared to CK2, the relative abundance increased in T7-treated Proteobacteria (Sphingomonas, Pseudomonas, and Lysobacter) and T4-treated Bacteroidetes (Flavobacterium) among bacteria. An increase in T4-treated Ascomycota (Zopfiella and Fusarium) and Basidiomycota among fungi and a decrease in T7-treated Mortierellomycota have been observed. Functional predictions of the bacterial Tax4Fun and fungal FUNGuild revealed that applying planting and breeding waste compost from the T4 treatment significantly increased the abundance of soil bacterial Metabolism of Cities, Genetic Information Processing, and Cellular Processes decreased the abundance of Pathotroph and Saprotroph-Symbiotroph fungi and increased the abundance of Saprotroph fungi. Overall, planting and breeding waste compost increased zucchini yield by improving soil fertility and microbial community structure. Among them, T4 treatment has the most significant effect, so T4 treatment can be selected as the optimized formulation of local commercial organic fertilizer. These findings have valuable implications for sustainable agricultural development.

19.
J Osteoporos ; 2023: 5572754, 2023.
Article in English | MEDLINE | ID: mdl-36875869

ABSTRACT

Aging leads to several geriatric conditions including osteoporosis (OP) and associated frailty syndrome. Treatments for these conditions are limited and none target fundamental drivers of pathology, and thus identifying strategies to delay progressive loss of tissue homeostasis and functional reserve will significantly improve quality of life in elderly individuals. A fundamental property of aging is the accumulation of senescent cells. Senescence is a cell state defined by loss of proliferative capacity, resistance to apoptosis, and the release of a proinflammatory and anti-regenerative senescence-associated secretory phenotype (SASP). The accumulation of senescent cells and SASP factors is thought to significantly contribute to systemic aging. Senolytics-compounds which selectively target and kill senescent cells-have been characterized to target and inhibit anti-apoptotic pathways that are upregulated during senescence, which can elicit apoptosis in senescent cells and relieve SASP production. Senescent cells have been linked to several age-related pathologies including bone density loss and osteoarthritis in mice. Previous studies in murine models of OP have demonstrated that targeting senescent cells pharmacologically with senolytic drugs can reduce symptomology of the disease. Here, we demonstrate the efficacy of senolytic drugs (dasatinib, quercetin, and fisetin) to improve age-associated degeneration in bone using the Zmpste24-/- (Z24-/-) progeria murine system for Hutchinson-Gilford progeria syndrome (HGPS). We found that the combination of dasatinib plus quercetin could not significantly mitigate trabecular bone loss although fisetin administration could reduce bone density loss in the accelerated aging Z24-/- model. Furthermore, the overt bone density loss observed in the Z24-/- model reported herein highlights the Z24 model as a translational model to recapitulate alterations in bone density associated with advanced age. Consistent with the "geroscience hypothesis," these data demonstrate the utility of targeting a fundamental driver of systemic aging (senescent cell accumulation) to alleviate a common condition with age, bone deterioration.

20.
Mediators Inflamm ; 2023: 4814412, 2023.
Article in English | MEDLINE | ID: mdl-36816744

ABSTRACT

Rheumatoid arthritis (RA) is a chronic progressive autoimmune disease characterized with high recurrence, high disability, poor prognosis, and long treatment cycles. Versus western medicine, traditional Chinese medicine has the traits of definite efficacy, low toxicity, and side effects in the treatment of RA. Moreover, traditional Chinese medicine also has the advantages of multiple targets, multiple links, and multiple approaches. This study was committed to exploring the effect of Jinwujiangu prescription on peripheral blood osteoclasts in those patients with RA and relevant molecular mechanisms. We first identified 159 common targets by online pharmacology, and there were correlations among these targets; besides, the main signaling pathways involved were inclusive TNF signaling pathway, rheumatoid arthritis, IL-17 signaling pathway, NF-kappa B signaling pathway, Toll-like receptor signaling pathway, etc. Through experimental verification, we found that PBMC cells extracted from human peripheral blood could be successfully induced into osteoclasts, and Jinwujiangu prescription inhibited the generation of osteoclasts from PBMCs of RA patients. CCK-8 and flow cytometry showed that osteoclast viability was significantly decreased and osteoclast apoptosis was significantly increased in the HIF-1α interference group; low-, medium-, and high-dose Jinwujiangu prescription groups; sinapine group; and hydroxychloroquine control group. Moreover, Jinwujiangu prescription and sinapine could inhibit the production of cytokines in peripheral blood osteoclasts and inhibit autophagy in RA patients. The expression level of mTOR was significantly increased in both Jinwu middle- and high-dose groups. In conclusion, this study demonstrated that sinapine, the active target in Jinwujiangu prescription, can act as a HIF-1α inhibitor; activate the mTOR pathway; downregulate the level of autophagy rate, ATG5, beclin-1, and LC3 expression; and inhibit the occurrence of autophagy. The trial registration number of the study is KYW2021010.


Subject(s)
Arthritis, Rheumatoid , Osteoclasts , Humans , Arthritis, Rheumatoid/metabolism , Leukocytes, Mononuclear/metabolism , Osteoclasts/metabolism , TOR Serine-Threonine Kinases/metabolism , Medicine, Chinese Traditional
SELECTION OF CITATIONS
SEARCH DETAIL
...